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ABSTRACT

This paper is concerned with the "Square Root Damage

[ Law"--an analytical method of computing blast damage on target
complexes. The Law assumes that target value is a continuous

function of position, and replaces a set of individual weapons

attacking a target by a weapon density function that is optimized

to give maximum damage. This basic approach is applied to

several types of target damage functions and methods of weapon

targeting.

7 Attentton is restricted to cases where the results can be

presented in relatively simple analytical form. The derivations

are presented in some dctail to illustrate tne nature of the

• •results obtained. Charts of danage are presented for sets of
dimensionless parameters that govern the damage sensitivity to

~I' weapon usage. As a practical application, they can form analyt-

S~ical bases for explaining the results obtained from detailed

numerical calculations of the damage for a particular target

from a specific set of weapon aimpoints.

vii

•.-U.



Chapter I

INTRODUCT ION

71 In assessing the effects of nuclear attack upon target

complexes, attention often isa restricted to blast effects, or

more precisely to effects where the probability of damage is

taken only as a function of the distance from a weapon, inde-
pendent of direction. In many cases the target complex is

Lt  assumed to consist of a set of discrete target elements; each
element has ain overall probability of damage obtained by com-

bining the probabilities of damage from separate individually

located weapons; and overall damage is calculated by summingI the effects on each target'element. While this type of calcula-
K tion is the natural way of assessing blast damage from a

particular attack, the results are strictly numerical and no

analytical itnsight is gained from such a calculation.

Iii Analagous to the dichotomy between particulate and continuum i
mechanics, an approach to casualty estimation can be developed

where target elements are replaced by a target value as a con-

tinuous function of position, and weapon locations are replaced

by a weapon density function. When the target value function

i~s a circular normal function, the local fraction of damage
is an exponential function of weapon density, and weapons are

optimally targeted against value, a simple expression can be

obtained for overall damage to the target complex as a f'Unction
of weapon usage. This expression has become known as the
"tSquare RootZ Damage Law." A derivation of this law, using a

somewhat more general expression for probability of damage as

17



a function of weapon usage, is given by Galiano and Everett.'

A comparison of the results of this formula with the results
of calculations against individual target elements is given by
Schmidt' for a variety of cases. A surprising degree of agree-

ment of the two methods is evident.

Despite the venerability of the Square Root Damage Law, no
efforts have been-made to apply this general approach to other

situations. That is precisely the intent of the present paper.
In this attempt, the algebraic structure is presented in some

detail to assist in understanding the nature of the results.

Chapter II presents a derivation of the damage laws when
the population is in a circular normal distribution, or uni-

formly distributed in a disk or in a ring. Results are obtained

from situations where the targeting is optimal against one type
of target value distribution or hardness, but the actual hard-
ness is of a different type. Such results are of interest when

two separate types of target values are collocated, e.g., where
4the targeting is optimized against the industry in a target

complex and the evaluation is against the population.

Following. this, a more generalized derivation of the damage

law allows damage calculations for value distributions that are
a function only of radial distance, but are arbitrary in shape.
Several applications of th~s derivation are presented. Finally,

some factors influencing the shape of the damage functions are

presented.

'Robert F. Galiano and Hugh Everett, III, Defense ModZe IV, Famiy of Damage

Fwotion. for Z•tipZe Weapon Attaoks, Lamda Corp., Paper 6. March 1967.

'e A. Schmeidt, A Sensaitivity AnalisA of Urban Blast Fatality Calculations,
Institute for Defense Analyses,, IDA P-762, Januaryj 1971.
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Chapter II

ANALYSES

A. SQUARE ROOT DAMAGE LAW DERIVATION

This section will rederive the Square Root Damage Law in

some detail as a basic algebraic theme from which variations
will be taken. In so doing, the algebraic structare rather

than the logical basis is of prime interest.

Assume a population, V., is a circular normal distribution
so that the population density at any distance r from the center
of the distribution is

V(r) - Vo/27rt 2 exp(-r 2 12a 2 ) . (i)

In subsequent discuscions, the distribution of the targeted

va.ue, VT, will usually be different than the actual one; in
describing the former, a will be replaced by 8; in the latter,

a will be replaced by a.

Assume a weapon density w causes a fraction of fatalities
F(w) and that the functional form is'

F(w) -1 e (2)

The damage at akuy point is

h(r,w) = V(r) F(w) . (3)

Through the introduction of a Lagrange Multiplier X, one can

'For a discussion of the relation of a weapon density to a discrete set of
targeted weapons, and how to determine values of the constant k, see
Schmidt, op. cit.

3
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see that for an allocation that maximizes total return

H = fh(r,w)dA (4)

as a function of total weapon usage

W = fw(r)dA (5)

we have

ah(r,w)/3w U

whenever w > 0. Since

Bh(r,•)/Bw Vke-kw

we have

/kV(6)

or

0, kV/X < 1

W II

i/k in(kV/X), kV/X 1>I,(),

and

F = 1- X/kV (8)

when w # 0. At this point it is convenient to define I

y 2r 2 /kV • (9)

y is proportional to the Lagrange Multiplier X. Now we can

write

0 exp(-r 2 /2& 2 ) < y

and
/ .• 2 22

F 1 - y exp(r /2a ) . (11)

A• ~..



r .-

The weapon usage W is now found from

W 1/k ln(l/Y exp(-r 2/2a2)) 2wr dr

R 0

where r. solves

exp(-r2 /2 - y • (12)

This is readily found to beit.

W 2v/k [In(l/y) r 2C/2 r r 2/8a

W 2,W- 2w/k [ln(l/y) • r /14] ,

SW (•Ir/k)a 2  2 (l/y) , (13)

using the definition of re twice. A normalized weapon usage is
introduced by

X; kW/Ta , (14)

from which

I X X in2 (1/y)

and

y - exp(- /- ) . (15)

A critical point in achieving a final expression for survivors

directly in X, rather than two expressions in the parameter y,

is solving for y in terms of X. *1

The total fatalities are found from

icVo/2'rc ep-2/c 2

H Y exp(r2/2a e2/2) 22a. 2nr dr

0

5
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True i~s readily integrated to

H -V 0 (1 - exp(-r2/2m2)) -yV 0 r,2/2ct 2

The fatalities are expressed as a fraction and the definition

of r. is used to give

H/V0 - 1- y - y ln(1/y)

4H/V 0 = 1 y (.1 + ln(1/y)) .(16)

Now using the expression for y found from integrating
the weapon usage,

HV 1 - exp(- ,'r )(1 + AF-) .(17)

If S is the fraction of survivors, then

S exp(- V )(1 +v7 ).()

B. SURVIVORS FROM POPULATION IN A UNIFORM DISK TARGETED
AS A GAUSSIAN POPULATION

TARGETED

Assumne a population V., for which damage is to be

assessed, is uniformly distributed in a disk, of radiua R with ;
pOPulation density ý

6



V(r))

r R.()

The targetir1~g is assumged to be against a Gaussian distri-

r buted pooulation given by

- V -VT/ I2wrB 2 exp(-r 2/20 2  (203)

with a damage function as d~efined in the squar'e root law deriva-
tion.

To relate the assessed population to the tar~etings csall

2 2e R/? (21)

Since the targeting Is identical to the previous section, then

X ln 2(l/Y),

using the derivation of the previous section with a replaced by

A To compute damage, two cases muuit be corm4idered, n~amely

Case I: r R

Case II: r c > R

where r0  as before, is the limiting radius for w > 0. For Case
I. using Equation (11)

H uf V/WH2  (1 -Y exp(r /202) 2ir drJ

t~iu22 [r2/2 0~~( 2  28 )

H/V0  2/R -r 12- & , -0)

7



Vflow using the definition of r.,

H/Vo 2 2 2 /R 2 (in(l/y)- y/y + y] 1 I/0 [in(1/y)+ y - 1]

In te'rms of X, using Equation ý15)

,•. ~~H/V'0 1/o [exp(- .'" +• 1 22)

Poir Case II

H f V0 /R 2  1 - y exp(r 2 /20 2wr dr

'4 0
o--2

Thus

WHNO 21R2 [R2 12 -_2 y exp(R2 /20 2 ) + B2y1

So
H/V0 -ii,," [, - y exp(•,) + y] , (23)

or

'H/V0  1/,w [, + exp(- T )(1 - exp(,))] . (24)

To distinguish between Case I and Case II, we notice that

(, rc - R at the ýborder between the two cases; then, by definition
S• of rc

exp(-f 212/ 2 ) = y (25)

from which, using Equation (15), at a critical X

Xc

Summarizing, the fraction fatalities are given by

Si/i. [exp( - P ) + "--- 1], x _

H/V0
1/40 [0 + exp(- f-X )(! - exp(,))], X > 2 * (26)

8



In terTms of survivors,
• Ii+ 1/10 - 1/o lexp(-,- + OT-), X < 1_

S ) ex(- e))(exp(O) - l)/X, x >e2• (27)

The fraction of survivors as a function of X is presented

in Figure 1 for various values of'P. The dashed line separates
the two regions where the attack radius is less than or greater
than the target radius of the assessed population. Large val-

ues of# have more survivors at constant X, in part simply

because the attack is the same and the target is larger.

To express survivors in terms of weapon usage normalized
to the assessed rather than the targeted population, leto be
the standard deviation of the targeted population about the

targeted population disk's center; i.e.,

R
2 2 2wr dr

0

so =R/IT 2 (28)

SIf o is expressed in terms of a, we have 0 a /0 To normalize
in terms of the actual target, let

Y = kW/ra (29)

then
Y " "

Survivors can be expressed by replacing X in the previous
formula by OY, i.e.,

1 + 1/v - 1/v (exp(- A'Y + PY ), Y < '

•1 • ~exp(- /#P )(exrD(- 1)/0 - > (30)

_ A
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I

Survivors as a function of Y are presented in Figure 2.

P Since the normalization is by assessed population, the lower

curves occur with more efficient targeting. It is interesting
to notice that for #a 8, where the assessed population is much

more dispersed than target population, the targeting is more

efficient for heavy attacks (Y * 10) than when 0- 1 with the

two populations matched. This occurs for heavy attacks, since

many weapons are expended outside the assessed dopulation disk

where = 1. An optimal attack against a disk has a uniform

weapon density. The survivors are readily seen to be (see(35)):

S= e-Y 2  (31)

The curve labeled 'optimal targeting' in Figure 2 exhibits

this formula and is a lower bound for any of the other curves.

C. SURVIVORS FROM A GAUSSIAN POPULATION TARGETED AS A
UIIFORM DISK

ASSESSED TARGETED

Assume a population, V0 , is Gaussian distributed with

standard deviation a
2 2 2

V(r) - V0 /2ro exp(-r /2a2) . (32)

11
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The targeting is assumed to be against a disk of radius R with

r TIER2 R

V(r)

0 r > f. (33)
Let B be the standard deviation of the disk about the center as
in the last section, so

S- R/ /,7.

As before, efine 0 a to describe the relative size of

the two populations. It is clear that the optimum targeting

against a uniform value, is a constant weapon density, thus

W 7 rR2W

then

F(tw) 1 i - exp(-kW/!R 2 )

Define X by

X = kWi'w 2 , (34)

then

F 1 1 - exp(-X/2) . (35)

The damage H is given by

p R
( exp(-X/2)) Vo/2fro exp(-r /2a2) 2wr dr

0

This is readily seen to give

H/V0 = (1 - exp(-X/2)) (I. - exp(-P 2 /2a 2 ))

or'

H/Vo - [1 - exp(-X/2)] [1 - exp(-l/t)] . (36)

.1 13
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For survivors

S - exp(-X/2) [1 - axp(-lM)] + exp(-l/#) , (37)

To express survivors in terms of the assessed population,

I we define 02

Y-kW/wo (38)

Then

Y - X/O (39)

Lj so
S - exp(-YO/2) El - exp(-1/%)] + exp(-l/,) . (40)

The fraction of survivors in Figure 3 is for weapons nor-

malized by targeting and in Figure 4 for weapons normalized by

Il population; also Figure 4 shows the Square Root Damage Law
which represents the optimal attack. As such, it must be a
lower bound for other attacks. As can be seen for 0 - 1/2, the

actual survivors ara close to this lower bound for almost all Y.

D. SURVIVORS FROM A GAUSSIAN POPULATION TARGETED AS A
GAUSSIAN POPULATION OF A DIFFERENT DISPERSION

Ii 1TARGETED

Assume a population, V0 , is Gaussian distributed with

standard deviation a so

14
S€o4
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I 2w 2 2 2V(r) 0 Vo/2to exp(-r /202) . (*41)

The targeting in assumed to be against a Gaussian distributed

population given by

V(r) - VT/2,w 2 exp(-r 2 /28 2 ) , (42)

As before, let the ratio of the two dispersions be specified

by • * 02/02 The targeted population requires a weapon usage

es computed for the Square Root Damage Law, so, by Equation (15),

X a Tn 2 (I/y)

Moreover, for P -we again have
F - y ecxp(r2/282) , r • rc

where r0 solves (
H1

2 2
exn(-r /2S) Y .(44)

I. The damage H is given by

H f [l - y exp(r/282 )] V/2a exp(-r /lo 2 ) 2wr dr

Integrating gives

H/V0 - [l - exp(-r'/2a2 ))

S- y/(1 - o)[i - exp(z%2/2 2  exp(-r 1/22) .

Now using

K * exp(-r•!2c 2 ) a (exp(-r /28 2 ))$1/

17
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and recalling the definition of r. gives

H/V0  y/(1 - A1 -).

Now defining X as kW/wO2 and substituting for y using

Equation (15),

H/V 0 - 1 - exp(- vT/')

-[exp(- V•XT-)/(l -i)]CI - exp(- vT-/P)/exp(- V"T)]

(46)

For survivors,

S - (•/•-l) exp(- v'r-/7/) - exp(- /X-(•-l)) . (47)

To normalize by the actual population, let

Y-kW/ra2. (48)

So

Y = X/0 . (49)

Then 4

S ; (o/l-l) exp(-vY--) - 1/(-l) exp(-. f-- ) . (50)

It is interesting to notice that ifPis replaced by i/t,

the same formula is obtained. This implies that if the target

population is either too small by a factor of X or too large

by a factor of X, relative to the actual population, the same

number of survivors is obtained. The fraction of survivors is

presented in Figure 5 with weapons normalized for targeting and

in Figure 6 with weapons normalized for assessed population.

E. SQUARE ROOT INJURY LAW

Assume a population is Gaussian distributed so that
V(r) = V0/272 exp(-r2 12a2 (51)

Assume the population is targeted so that

FM= 1- e"k. (52)

18
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NQw consider anotherx.uation function,

-
_ k w

F (w)1-e -

C

This function will: beuslfor two caess'

Case I: The actum., vulnerability is'.k and the effect

'of the. attacker using an i•correct vulnerability
is~p~ int. jrestrest

Case II: T c.ie k reresents a casualtl,, rate andwe wish

to determ•n.rle injuries (casualties minus fatal-

ities).

In either case, define

"= kc/k * (54)

For fatalities, when', F(w) is used directly with k, the

square root law derivation is used, leading to

H/V0 = 1 -* exp(- -X- )(1 + v ),

where X is defined as kW/ao2 .

Call Hc the Ni-a7.tie obtained using kc.
. /C

• Fc(w) V(r) dA .(55)

r H0  f
0

As before, the Integration could be directly performed using

Fc -k- Y exp(g r 2 /20 2 )

However, the following change of varS.ables leads to less algebra.

Let

dV = -V dA/27r 2 , (56)

21



I''

so

V0 /2,o 2

2f 0 0 w
"H 27"a i F<, (w) dV .(5TS)

From the definition of k., and substituting for w,

-k-w
Fc * 1 - e 1 - .(58)

2 f rl- (x/kV)] dV.
H 2n~

X/k

Now let y = kV/X to give the simple expression

H-/V = 1/dy' ~1 }

From which

H /v- -(59)

For Case I, we wish values of Hc directly. Recalling

"y = exp(- -"T )

and calling

Sc =1 -H /V0 , (60)

Sc - exp(- ) - exp(-X/- ) (61)

Here the weapon usage is normalized by the original attack. iValues of S are given in Figure 7. Normalizing by the actual

+• vulnerability gives

:.Y 2-Tr P, = X (6,2)

22
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Then

S a exp(- V-7J- exp(- M (63)

Replacing [ by i/C in this formula leaves survivors unaf-

fected, which implies that either an underestimation or an

overestimation of vulnerability will give the same result.

L!i Moreover, this formula is identical to that for survivors of

-4 two Gaussian populations of different dispersions in the pre-
vious section with v replaced by E. The curve of survivors in

that case, Figure 6, also applies here.

For CaseII, call injuries the difference betwe~n fatal-

ities and casualties, so

I - Hc/V - H/V0. (64)
cO0 0

Then since H/V0 = 1 - y - y in(1/y), we hte, from Equation (59),

0I

I = + y ln(I/y). (65)

Thus I

S= exp(- f ) -. exp(- T-X ) + • exp(--X )

or

I=exp( -x.)i-~p(l-• (66)

Injuries are presented in Figure 8 for values of & greater

than 1. In this Figure, the attacker is attempting to maximize

fatalities. If toe attackei' is attempting to maximize total

casualties--injuries plus fatalities--then values~of t are less
than 1; i.e., the vulnerability of the evaluated population is

less than assumed by the attacker. The injuries in this case

are presented in Figure 9.

24
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F. SURVIVORS FROM A GAUSSIAN POPULATION TARGETED AS A UNIFORM
POPULATION IN AN ANNULUS

I ASSESSED

TARGETED
pim

LI I I , I

II

Assume a population, V0 , is Gaussian distributed with

standard deviation a so
• 2•2 -2 22

V(r) = V0 /2ra exp(-r/ ) .

The targeting is assumed to be against a uniform ring with

inner radius L and outer radius H. In order to normalize the

evaluation in a way comparable to other situations, a "center

of gravity" and "standard deviation" of the ring is defined

by

H• m 1=/A r " 2nr dr , (67)

where A is the ring area = Tr(H2 - L2), and

HB - 1 'A (r 22r dr (6n)

L

27 2
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This yields

2 H 3 - L 3 (69)3L

2 H4. L4  m2

B f (70)

The expression for B is a measure of dispersion about the
"center strip" of an annulus. Thus, as the inner radius of

the annulus approaches 0, B does not approach the value com-

puted for a disk which is about the center. In fact, with

L - 0, we have

Bring 1/3 Bdisk

There is no simple solution for H and L in terms of m and

B, but a simple Newton's method type of procedure will allow

for quickly determining numerical values. Figure 10 shows m

and B as a function of H and L. As the thickness of the ring

becomes small compared to a radius, the ring curvature is

insignificant in determining m and B, so that we have approxi-

mately

iH Pjm + 3B ,B/m << 1,

•L ;3 m - /3B- ,B/m << 1

The departures of the contours of constant m and B in
,•..Figure 10 from straight lines where L/H is small indicate '

departures from this approximation.

The ratio of target to actual standard deviation, B/a,
we shall call p, and the ratio of ring center to standard

deviation m/a, we shall call n. At small L, the 0 used previ-

ously is related to p by 0 = 1/9P 2 if 0 is substituted for

3B.

The total weapon usage W is given by weapon density times

ring area, or

28
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W a r(H 2 - L2 )w

Call X the weapon usage normalized to the target, or

X , kW/wB 2 a kW(H 2 - L2 )/B 2  (71)

Call Y the weapon usage normalized to the assessed population,

Y -kW/wB 2 - kw(H 2  L2 )/a 2 . (72)

The succeeding calculations will be in terms of Y but could

be readily converted to X by changing a to B. The calculations
will be done explicitly in terms of H and L, which are functions
of m and B. As the expression for Y shows, these functions can

be considered as normalized by a; I.e., the expressions are in I'

terms of H/a, L/as p and n.

The fraction survivors k is given by

F 1 1 - exp(-kw) 1 i - exp(- ) (73)
H2/a 2  L2 /02 14

The value destroyed is given by

H

H *f F *V dA;

LI

fY 22 2(1- L2 ) V,/2wa exp(-r 2 /2a 2 )2wr dr
L H2a2 - L2/aL

Integrating, and letting the fraction of survivorz, S -

I -H/V 01 gives

S" 1- Il -expY [exp (-- -exp -.S(H/a2 _ (./o)2 .c 2!

(74)

(A similar formula based on S is attained by substituting X for

Y and B for a.)

30



Fraction survivors are indicated in Figure 11 for the annu-
lus center, m, at a constant value with varying annulus width,

B; and in Figure 12 for the annulus width, B, cor.itant and vary-

in& distance of the center m. In these figures a curve for

L - 0 is given which reduces to the disk calculations presented

earlier.

When L/H is near 1 and the approximate formulas for H and

L can be used, we have

S f 1 - [1- exp(-Y/(4 /vnp))][exp(-(n- /3P)2)

- exp(-(n + /1P) 2 /2)] . (75)

G. SURVIVORS FROM A POPULATION IN AN ANNULUS TARGETED AS A

GAUSSIAN POPULATION

TARGETED

- ASSESSED

Assume a population is of constant density in a ring of
inner diameter L and outer diameter H. Let m and a be the
mean ring distance and a the standard deviation. The relations

between H and L and m and a are the same as in the previous

section, with c replaced by B. The targeting is assumed against
a Gaussian target distributed

2 2 2U ~V - V /27wo exp(-r /20

As in the square root law derivation, the weapon usage is

31
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x - kWwO2 - 1n2(l/y) y

with

22wO A/kV 0

The fraction damage F is
S2 2

F w 1 - y exp(r /201

and extends to a distance rc where rc solves

y a exp(-r6/2B' 2 )

For r less than L there is no damage and-the fraction

survivors is 1. Otherwise, for damage

J

H a J El - y exp(r2/?2S)] IV 0 /w(H 2 - L2 )] 2wr dr , (76)
L

where

J " min(r ,H) • (77)

This readily gives
j2 2 ( 12 epj/12

S I H/V0 - - 2 exp 2 X 2 exp(J2 /202

H L H L

- exp(L 2 /28 2 )]

If rc > H this simplifies to

-r 2/ a2

(-exp 2 2 [exp(H2/282) - exp(L /282)] . (78)
H L

For r. < H this can be written

S =1 2- 22 V - L 2 + 2 2 ep Y_ x( 2
2/ XL 2 22 2 2

Sa -+ H _L2- 2 exp(- IT ) •82 exp(L2/282).''

H -L H -LH2 L2

(79)

• 34



In terms of the assessed population, the normalization becomes

SI kW/wBs I (80)

where, * B2 /B 2 . The fraotion of survivors as a function of Y

is shown in Figure 13 for an annulus of constant ratio o.f outer
to inner diameter of 2.9. When the targeted population is not
dispersed enough, the weapons are concentrated in the hole in

the annulus. As the standard deviation of the targeted popu-
lation is increased, the tarpe.-ing becomes closer to optimal

targeting until finally the ,apons are too dispersed and th3

ý4 targeting effectiveness drops off.

H. AN ALTERNATIVE SQUARE ROOT LAW DERIVATIOIO

In this derivation, the geometric context of the square

root law will be emphasized. As before, let

V(r). V0/2Trcta exp(-r /2ai)

Let

•;2 2

I' .S1i
!•'! = • (81).

Then (8

V(r) Y Vo/T6 2 exp(-r 2 /6 2 ) .

Now calli'2!•, nS AT (82)

so AT is the circle which contains 1 - l/e, or 63 percent of the

population.

Let

A r•

•..• 35
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Then

V(r) - Vo/AT exp(-A/AT) . (83)

As before, let

F(w) - e-k

The optimal allocation yields the requirement

Ee-kw - X/kV, for X/kV < 1

Now let s,(w) denote the fraction of survivors, locally, so

s(W) - e-kw - X/kV

Call G = sV the survivors per unit area. Then

G - V • AIkV = X/k . (84)

Thus the survivors per unit area are a constant for the area

attacked.

The attack continues to a radius where X/kV = 1. Call the

area enclosed Ac. At this radius the target value equals the

survivors per unit area. Thus,

V/G =1,soo
VO/GAT exp(-Ac/AT) = l,

or

ln(V0/GAT) = AC/AT (85)

Define, as before, a dimensionless weapon usage by

Ac
X =kW/n2c 2 /AT kw dA. (86)

0

Now, since

e-kw = G/V

37
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kw - ln(V/G) - ln(V0/OAT) - A/AT

Thus
Ac

X - 2 /AT f (ln(V0/GAT) - A/AT) dA
0

- 2/AT ln(Vo/GAT)AC - 2/AT2 Ac2 /2

- 2 AC/AT (ln(VO/GAT) - 1/2 Ac/AT)

Since Ac/AT - ln(VO/GAT) '

X (Ac/AT) 2  (87)

or alternatively,

2
X - in (VO/GAT)

Divide survivors-into the area in the circle Ac and the
rest of the plane

S- S1 + 3

Si - GA•

S Ac V dA Vo/AT exp(-A/AT) dA

Ad Af

= V0 exp(_Ac/AT).

S - GAC + V0 exp(-Ac/AT).

Normalizing,

S/V 0 - GA /V 0 + exp(-Ac/AT) (88)

Now S will be computed both in terms of G and Ac.

38



First, geometrically:

S/V0 - AT/V 0 • AC/AT + exp(-Ac/AT)

Now,

- ln(GAT/V) -A/A

so

,AT/V 0 - exp(-AC/AT)

SS/V 0  , exp( Ac/A T) AC/AT + exp (-AC/AT )

Sexp(-Ac/AT)(AC/AT + 1) . (89)

And since

Ac/AT -

S/V0 , exp(-4 7 )(X f-+ 1)

Now in terms of survivors

S GAT inV 0  + GAT

0 V0  GA 0

" GAT/V (In(V0/GAT) + 1 (90)

Now

GAT/V0 - exp(-vrT ),

so S/Vl exp(-Vf-)(vT-+ 1)

1. A GENE(.,i,•ZATION OF THE SQUARE ROOT DAMAGE LAW

Suppose value, as a function of area covered, is an arbi-

trary decreasing function. Then the use of weapcn density can

still be used for a more general form of the square root law.

39
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Let

0 A 11A)(1
AT AT

j be the value per unit area where value density is a decreasing
function of area; i.e.,

df) 0 (92)i dx
Let

g(x) - f(t)dt . (93)

'f X

wJV(A~dA V (0 r A. dA
-Vo f (AlAJ (
0  T AT

'V f(A)dA

Thus we require

g( 1. (94)

Moreover, to normalize distance in a fashion comparable to the

Gaussian case, set

1 - 0.63 (95)
e

The damage, as a function of weapon density, is still

F(w) =i-e-

U The optimization of an attack yields

a V(A)F(w) V k-•

~4o •o ~Ii

- . - - - -- - -.---.-
• ... . . . . . . . . . . ... . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . , . . . .- . " , , • .: . •



50

e-kw A f -x

Call a the local fraction of survivors and 0 the local number
of survivors per unit area. Then

G - Vs - V(l-f) - Ve- a - Av- x.

Thus 0 Is a con3tant in the area attacked. The attack is made

out to a radius where

kV

or

V-

Call A the area attacked- Then
C

(A A T 
(96)A "-V_

The weapon usage W is given by

W " wdA

Let X be the normalized weapon usage, as before, so

A C

2kW 2A - ;T- kwdA ( 97)

Now

e-kwn G_
V

so kw -n(i) l(in '(0))

41



Then

2 fA f 1

Ac
0 0

Ac

Ac 1 P' I T inf.)d (98)

IT

20

Now define

K he h~x) = in (t~t))dt . (99) i
A2 V 2hI l( f~x) (100)

S) T he n

X -2- in +2h T (100)[ The total survivors is the sum S1 of the survivors in the area
attacked and S2 in the unattacked area with

S2 -V -

242
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The fraction of survivors is then

S AC OAT A

IH
J. AN APPLICATION OF THE GENERALIZED DAMAGE LAW TO VALUE

A LINEAR FUNCTION OF AREA

Let value be a linear function of area, say of the form

2 A

V(A) (102)

0 A > AF

For a circularly symmetric value function, value would
decrease quadratically with distance. After normalizing with
the area AT) we have Ts;Vo(

T- - -' AT

v A (103)
0 , ,:/A 1.

'IT e

where 6 - 1 -v'/7e m 0,39346934. (10J4)
Then

25x e 2x2 , x <
g(x)

, X >

and it is readily seen that as desired for

normalization. Moreover, in terms of t•he original triangle,

AT - 5AF

"43



For h(x) we have

-h(x) x - Olog(2- 2i 2x) x + log(25) (105)

Now suppose a value of 0 (survivors/unit area) is given.

Then with AC defined as the area under attack, call x AC/AT.

Then

i W AT 1x° """ "0 24-• '

Now from

X 2x in ( + 2h(xc)

we have

2 In 0 1 T + 2(log 26- 1) (106)T - .
and from

S_ !AT• 1 g(x,)

we have

s 1iGA T 1 GA T2  17

Numerically, this gives

~~ifGA\
-5 -0 8 2 9 8 8 1 i n .+6 .4 5 9 1 9 2 6 .3 0 0 8 9 7 2

V/ = 2.5444 \ .3490
0

V VolvolIn this case no explicit function -I(x) is presented.
0  

GAT

Solutions must be obtained in terms of the parameter -T--"

The valid range of area attacked xc is 0

I
0 < X Xc _e,

4414
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which gives

SOAT
24 " 0.79693868 > V-A 0

SThe survivors, as a function of attack intensity, is pre-
sented in Figure 14. The square root law, with Gaussian tar-
gets, is included for comparlson. As can be seen, practically
no difference occurs between the two curves until the survi-
vors are under 50 percent. Then the larger amounts of area at

low value density in the Gaussian targets begin to signifi-
cantly affect the attack effectiveness. In Figure 15, the
survivors, attack size, and several other parameters are pre-

sented as a function of the area attacked. As is clear in the

Figure, not until almost all the area is attacked does the

weapons usage become relatively large.

K. AN APPLICATION OF THE GENERALIZED DAMAGE LAW TO
VALUE AN EXPONENTIAL FUNCTION OF AREA TO A POWER

Let the value as a function of area be given by

V(A) - V0i exp{-(BA)n} , 0 < n < . (108)

The area A is wr 2 , so this can be written

V(A) V V0i exp(-{Bir21n)

For n = 1 the standard Gaussian shaped curve is obtained.

For n- an exponential decay is obtained. 3 and 8 are
parameters whose values will be determined by normalizing the

value function. The damage will be calculated using the second
alternative derivation. To normalize, call

f(x) = • exp({SAP) , (109)

and X

g(x) f(t) dt , (110)
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Now for normalization we need

g(ca) =1i.

From the integral

xne-(rx)m dx mrn r , n+l, r, m > 0]

we have

from which

f(x) = n exp((x)n) .. :12

rI~
and

g(x) exp dt exp( y y . (113) ""*

V. fThr rfzl

For normalization we wish

g(l) -1 01 - .'63212055509

Thus 8 can be obtained numeric'ally a P afi'lnction of n.. n..

An approximate equatIon for 8 i . . *.t

I0(-0. 2 2 5 + 1.3 2 (iOg,04 - iogi)'), n < 4 .

0.57 + 0.036! g N , n .. N.,",.)

calling a an. approximate equatidn fora is (115)

n

0.8.+ 5.81og1 n , m <,.6

1/a, ((116)
0..4i453(l m-I'.09) m > M. ,.,

I'. 1 14



Thef f(x) a ex~p(-(Bx))

w. mxe now a and:, 0 cani be expressed as-'functions of n. Now for,

val-w,-, ie' carvi a1so write

_,\n)A (117)

and pr'eaerve-norma-aizatioh. -Here AT is the Arlea 'Within which

I,- of t)ie Population resides., Ther, ,x A/ T~cms ra
1Trexpressed in un is of -AT.,

wihNow let a num~bet, of' 6uYrvivor5 per unit area,' G be giv~en. We,
wihto. f i.nd %nf, x 0  Ac/A) s0 t hat

f~x GAT . 18

h~)f C) i) dT(1)

0

Theus x ~ x solves.,p((~~n )t

a x ,,xIy 19

c
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ln particular,
n-+1

h(x =x` in W ) - a(122)

Now

X A2 n(1X + 2h'(x ).(13
C C

Finally, for survivorp~ . . . .

IC C.

The followinK table compsires, exact-values uf 0 and a' with
values f romm the f'itted c,.urves.

n 0)KIC't 1i F() 1 -In "e xact. Oi.

0.125 g7.100.0,00 197,840 5.040 Y0.0014878 -6. 51044 672.1230 84.60
0.25 357.473 2.01 O .0M714 -2.701 14.89 14.76
0.5 . 4.6224 5.0O 1 0.43268 -0.0~777 2.3-112 2.58
0.75 1.55201 I.Eý 6.89296 0. 7672 i -4.6506 1.3035 1.18'
1.0 1 .40231 0.9;6 1.00 0.9977 -0.00h3 1.0623 1.00
1.5 0.716634 064 1.3640 .1.25$6 0.230?9' 0.7A39 0.8529
2.0 0.63778 C .623 1.1;24 1.349A 0.3289 0.7197 0.7897,
4.0 0.58720 0ý691 3-AI46 1.5436 0.31 0.647A 0.7066
8.0 0,497143' 0.602 17.534 4. V76 0.4554 0.b341 0.6?#0S

54.0 0.24_{ 0. 61P 63'.44 V.b99 0.4674 0.6329 0.6437

Figitres .76 and 17 pre' 6e nt values 'r, a f'unction of distance
f or n > I r..ad n < 1. that iQ, the .ý.o'ves preý,-nt f (x) as a funn-

tion of /iE. The I'ntegr&l of' the value F,(x) 'is pr,ý-ented in

Figure 18 as a function.Qf distance rx 'for the extreme values
of n considered%. In!P'i;ure 1.9 the fraction survivors as AA

'Ttme ,,exacttl values9 of arnd a ame f'cun thrOV&i solving the equation

e f

This wa&s acccmUp1:Ahed. n~anrica11li by evaL~uating the integral by Sinpson'sf
rule tjlijg 1,000 s4Peps .tur dif.06ring, values of 8 urntJ.l the desired value war,
obtai~n~d. Sincee at nwl 1 0 ir~mld be 1 ex'a-tly', VtIe quoted vp&&Ie givea~ an,

i ýic noi of the error In this ruinerica1 prccedure.

1,J 50
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function of normalized weapon usage is presented. For n *1,

the curve is the usual square root damage law. For n -64,

the value is almost uniform and then rapidly drops so the dam-

age is close to that of. a uniform disk optimally targeted; i.e.,

the fraction survivors is an exponential function of weapon

usage. For n a 1/2, the value is an exponential function of

distance. For values of n less than 1/4, no curves are pre-

sented since the decay of value with distance is extremely

rapid and numerical integration using Simpson's rule over inter-

vals (the algorithm implemented here for numerical evaluations)

becomes tedious.

1. FACTORS INFLUENCING THE PROBABILITY OF KILL AS A FUNCTION
OF WEAPON DENSITY

In this section some rational for the use of a weapon den-

sity is presented. This is done first by studying the survival

probabilities when a larger number of weapons arrive at random

in a large area. Next the probability of Survival from weapons

delivered in regular patterns in an area are considered. This
is done analytically for weapons where the probability of kill.[ for the weapon is one inside a weapon radius and zero outside,

and numerically for several typical types of assumed weapon

kill probabilities as a function of distance.

Suppose weapons are delivered In an infinite plane so that

any point in the plane is as likely to receive a weapon as any

other. Then In any specified area the number of weapons deliv-

ered is a Poisson process with the distribution of number of

weapons given by

P(ni) -e~wA (wA)n (125)

where A is the size of 'the area. Since the expected number of

weapons in a unit area is w, we will call w the weapon density.
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Consider any monitor point in the plane and let this moni-
tor point be surrounded by a set of N non-overlapping but touch-

ing annuli, where the jth annulua is centered a distance ra
from the monitor point and has a thickness dr .

The area of the jth annulus is given by

A - w(2r dr + dr 2 )

The probability of n weapons arriving in this annulus is

-WAj (wA )n

P(n) = • n( )

The overall probability of kill of the monitor point from
thweapons in the j annulus is the sum of probabilities of kill

for one weapon arriving, two weapons arriving, etc., or

PJ" " Pk (rj )caAaej + .. +(- (i - Pk (ra ))f)(wAa -- a•n.

The rings form a mutually exclusive set of areas covering

te plane, except for a distant final outer section surrounding
e rings. Then the probability of survival of the monitor

point is given by the product of the probabilities of surviving

the weapon arrival in each ring.

Now let N become indefinitely large so,(l) for all j for

j 1,2,...N, lim A - 0 and (2) lim rN ,. It is clear that

this can be done with a countable set of rings; for example,
let rj j a 1,2,...N. Then the area of each ring is

A + < '72 i37-2)

and lmA = 0.
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Then

N -wA
SS Up l n P k k(r )wA e J 0(

Nj

[~. - O~r2)
11 [M Pk(rj)w2wrrjdrj + (dr
N*o J~1

Now taking logarithms of both sides,

in S - in limn [ - Pk(rJ)w 2 yrjdrj + 0(dr 2]

N

- irn 1 in(1 - Pk(rj 2Q rj drj + O(drj 2))

-jI

Now
2 3

in (1-x) - - (x + + i + "'" ) Ixl < A
iI

Thus,

inS rn0 (dr+0
a k (j )

Now, assuming the Pk(rj) are such that the sum converges,

which is, ertainly true for all practical damage functions,

pA

in S lf _Pk(rj )w 2 wrj dr

-W Pk(A) dA (126)

57

::AM



I2

Now Pk(A) dA is often equated to wWR 2 where WR is
0

called the weapon radius. The circular area is the area of a

cookie cutter damage function which does the same damage.
Thus, finally,

2
S e-W(wR) (127)and2

P 1 1 -

This is the form of the damage function of Equation 2 which

underlies the square root law formulation.

A suggestion by John Donelson1 gives the same result in amuch shorter fashion and in a way which makes the answer

intuitively clear. The expected fraction of the plane covered

by lethal effects is wr(WR) 2 . A small change in this fraction,

i.e., Aww(WR)' gives a proportional fraction change in tha

survivors. So

_ -• .* Aw r(WR) (128)

or

-AILn S - AwI(WR) 2

2(WR)2S 
J:- "

The random pattern of Poisson arrivals Just discussed A

might be appropriate for an attack against certain types of

valuable targets in an area where population happens to be cal-

culated, and where the location of the population is not sig-

nificantly influenced by the location of the other valuable

targets. On the other hand, if an attacker were interested in

1Formerly with Institute for Defense Analyses, currently associated Itth
Science Applications, Incorporated. 2
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attacking an enti:.e urban area, then he might place his weapons

in a regular pattern. Auy target in the urban area is some-if where within the pattern, but unless some reason ia given to
fix the location of the weapon pattern, the target may be any-

where within it.

Suppose weapons are placed at the intersections of a square
grid with mesh length 1. Then the weapon density w is simply

W • 1/ 2 . If the probability of kill is I inside some weapon
radius WR, and 0 outside, then the expected kill is simply
determined by the fraction of the plane covered by weapon circles.
Call p - W./,/. the fraction coverage, and expected kill is

readily seen to be

•ir I 2

w22

S2cos-'() 1< p <

1 < p . (129)

The fatalities can be given as a function of the fraction
coverage of the plane, C, to be consistent with the previous

section. Then I'C •(WR)2 W it 2 (130)

If the weapons are dropped in a more closely packed pattern
of equilateral triangles of side length 1, then w 2//3k2 .

Again, calling p WR/A/2 for fraction fatalities,

,- 0 < < I

V- 2cosl(-) 1<0P< 2

2

The coverage is given by c = n 2
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The f rac't ion survtvojras f`Udqtup.1on Pj ..qovet~age v pre-

sent ed as a. l1inear~plot 4:Vgr-2Oapd asa. Oemli-'1of~arit hznic

plot in Yigure'21, 4.,Also 'presented -are: suwrvivorIs' f or,tbe rand~lm
delivery, con'side'red earjier. ,Thý,*bottom .atraizhtiline' n.

Figure 20' repreaei'eits, th4e 3U~rvivQra-:if? weapon Jrot Tect' co, ld, be

perf~ectly. rlaced,, e0g'., -kqa~re I e ýha tk, eectz' a~e~as covering

the plane foir weapons pla.qe#i in' t"he 6enter'o~f. each square. As

can,.be 3aeen* th*pre is ''no, oveisJla for' the eq~u' ater~l, trlantle,

-~tenuntil 0.9 _Vý& th' lah6. is cov~ez, b~ pots ,effec ts'.

Even then there, i-a ?ess- than "four,.,percent differi~nce betw~een

thla coverage and t~hie no0 overl'ap val'iation,

rTT t~he fra~cticnf damage as a function of distanc~e is a

gradually decrea-ing fun~ction of the distance, t~e n e~ff eats of

.Over'lap m~ust be, considere4. Figures 20-i:nd -2.1. calqulat±i~ns

for Tol.r casefe,.of Fizure 2.2 with wepn(,tot--.n surs

In Figures 19 ad20'j$t anbsenhat the e frome

t~he equivalent of almost perfect plac~ement to al~most. random.[ ~placement.

Some typicul, .fr-actlon damage as a function of distance

example3 are shown -in Figu~re 22. They rep~rese~nt a ran~ge from

very steep cutoffs in weapon lethality to ,quite gradual ones.
The labels give- an indicatiun of the type of weapons target corn-

bijnations considered. In obtaining these curves fraction kill

as a function of distance is obtained by combining a function of

fraction damage as a function of overpressure with a function

or overpressure as a f'unction of distance. The fraction of

damage as a function of overpressure is assumed to be a -.uru-

lative log normal curve and the value a in Figure 22 is the

ratio of the standard deviation of the cumulative log normal

curve to the maean lethal overpressure.
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